Capital Markets Efficiency: Fractal Dimension, Hurst Exponent and Entropy
نویسندگان
چکیده
منابع مشابه
Time-varying Hurst exponent for US stock markets
In this work, the dynamical behavior of the US stock markets is characterized on the basis of the temporal variations of the Hurst exponent estimated with detrended fluctuation analysis (DFA) over moving windows for the historical Dow Jones (1928–2007) and the S&P-500 (1950–2007) daily indices. According to the results drawn: (i) the Hurst exponent displays an erratic dynamics with some episode...
متن کاملStochastic Models That Separate Fractal Dimension and the Hurst Effect
Fractal behavior and long-range dependence have been observed in an astonishing number of physical, biological, geological, and socio-economic systems. Time series, profiles, and surfaces have been characterized by their fractal dimension, a measure of roughness, and by the Hurst coefficient, a measure of long-memory dependence. Either phenomenon has been modeled and explained by self-affine ra...
متن کاملEstimating the Hurst Exponent
The Hurst Exponent is a dimensionless estimator for the self-similarity of a time series. Initially defined by Harold Edwin Hurst to develop a law for regularities of the Nile water level, it now has applications in medicine and finance. Meaningful values are in the range [0, 1]. Different methods for estimating the Hurst Exponent have been evaluated: The classical “Rescaled Range” method devel...
متن کاملEstimation of Hurst exponent revisited
In order to estimate the Hurst exponent of long-range dependent time series numerous estimators such as based e.g. on rescaled 9 range statistic (R/S) or detrended fluctuation analysis (DFA) are traditionally employed. Motivated by empirical behaviour of the bias of R/S estimator, its bias-corrected version is proposed. It has smaller mean squared error than DFA and behaves comparably 11 to wav...
متن کاملHurst Exponent and Financial Market Predictability
The Hurst exponent (H) is a statistical measure used to classify time series. H=0.5 indicates a random series while H>0.5 indicates a trend reinforcing series. The larger the H value is, the stronger trend. In this paper we investigate the use of the Hurst exponent to classify series of financial data representing different periods of time. Experiments with backpropagation Neural Networks show ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Politická ekonomie
سال: 2012
ISSN: 0032-3233,2336-8225
DOI: 10.18267/j.polek.838